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Lecture 36

ADC Design



Analog to Digital Converters

The conversion from analog to digital in ALL ADCs is 

done with comparators

ADC design is primarily involved with designing 

comparators and embedding these into circuits that 

are robust to nonideal effects
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Over-Sampled

Quantizer  Levels

Effective Decimated 

Quantizer  Levels

Sampling Clock

Effective Sampling Clock

Over-sampling ratios of 128:1 or 64:1 are common

Dramatic reduction in quantization noise effects

Limited to relatively low frequencies
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ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled
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ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Interpolating

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled

All have comparable 

conversion rates

Basic approach in all is very 

similar
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Flash ADC
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Clocked Comparator
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Preamplifier with offset compensation and regenerative latch

VDACk
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Gain of preamplifier may still not be large enough
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Flash ADC Summary

Flash ADC

Very fast

Simple structure

Usually Clocked

Bubble Removal Important

Seldom over 6 or 7 bits of resolution

• Flash ADC has some really desirable properties (simple and fast)

• Wouldn’t it be nice if we could derive most of the benefits of the FLASH  

ADC without the major limitations

Number of comparators increases geometrically --- 2n

To be practical at higher resolution, must address the major limitation of the FLASH ADC

Major Limitation of FLASH ADC at higher resolutions?
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Two-Step Flash ADC with 

Interstage Gain

S/H ADC1
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Three-Step Flash ADC with Interstage Gain and S/H

S/H0 ADC1

Flash
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• S/H frees first stage to take another sample during second stage conversion

• This has a pipelining capability



Three-Step Flash ADC with Interstage Gain and S/H

S/H0 ADC1
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Same structure, different grouping!



Three-Step Flash ADC with Interstage Gain
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Pipelined ADC

Stage 1
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n1

r1 Stage 2

<b2>

n2

r2 Stage k
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XOUT=<n1:n2:…:nm>

XIN
S/H



Pipelined ADC
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Pipelined ADC Stage k
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Pipeline Stage



Pipelined ADC Stage k
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+

VREF

Pipeline Stage

Usually Realized as 

Single SC Block



Pipelined ADC Stage k
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Pipeline Stage

Usually Realized as Flash ADC 
(often simple comparator if nk=1)



Pipelined ADC Stage k
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Transfer Characteristics for 1 bit/stage
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Consider the following circuit

C1

C2Φ1

Φ1

Φ1
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VIN
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VX
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Φ2



Consider the following circuit
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Consider the following circuit
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Consider the following circuit
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Consider the following circuit
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Define Q1T to be the charge transferred from C1 during phase Φ2

Define Q2F to be the total charge on C2 during phase Φ2



Consider the following circuit
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Consider the following circuit
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Consider the following circuit
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Observe

C1

C2Φ1

Φ1

Φ1

Φ2

VIN

Φ2●dk

Φ2●dk2

VREF

2

VREF

VOUT

2

2

REF
IN IN

O
REF

IN IN

V
2V V 0

V
V

2V V 0


 

 
  




1-bit/Stage Pipeline Implementation
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1-bit/Stage Pipeline Implementation 
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ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Interpolating

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled



Cyclic (Algorithmic) ADC 

Gain/Shift

Stage 

<b1>

n1

rXIN
S/H

CLK

h

h

MUX

Shift Register n XOUT

• Re-use Pipelined Stage

• Small amount of hardware

• Effective thru-put decreases



ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Interpolating

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled



Interpolating ADC 

• Amplifiers are finite-gain saturating

• Shown for 4-bit

• Clocked comparators usually regenerative

• Reduces Offset Requirements for Comparators
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ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Interpolating

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled



SAR ADC 

• DAC Controller may be simply U/D counter

• Binary search controlled by Finite State Machine is faster

• SAR ADC will have no missing codes if DAC is monotone

• Not very fast but can be small

VIN

DAC
n

CLK

DAC 

Controller

VREF



ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Interpolating

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled

And Single Slope



Single-Slope ADC
Sometimes Termed Integrating ADC

Falling edge of φ synchronous with respect to falling edge of CLK

CCLK

φ 

VX

Integrate

tRES
tCONV

t

Can convert asynchronously wrt CCLK or can be a clocked ADC where 

conversion clock signal is synchronous wrt CCLK.

Output valid when comparator output  goes low

Note VREF not explicitly shown in ADC architecture
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TCLK

VX

CLK
(rising edge triggered)



Single-Slope ADC

Operation:

   
CONV
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X
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Comparator will stop counter when VX=VIN and counter output will be XOUT=k
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Single-Slope ADC

IX,VREF,R,C,TCLK  must satisfy the relationship

nX
REF CLK

I
V 2 T

C


IN REFn

k
V V

2


Benefits:   Very simple structure and can provide a low-cost easy solution for low 

speed applications

Limitations:

• Process variations make it difficult to satisfy (1)

• C is large and must be off chip

• Linearity of C important (since off-chip)

• Nonlinearity in IX degrades performance

• ROUT of IX degrades performance

• Slow

• Not widely used

(1)

Options for improving performance: 

• Introduce self-calibration cycle to satisfy (1) by trimming IX or C

• Use high-impedance current source

• Use OP-Amp Based RC integrator
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Dual-Slope ADC

R

C

R1

R1
VIN

-VREF

φ1

φ2

Noninverting Integrator

VX VOUT
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• Output valid when comparator output transitions to Low

• Must set RC time constants and CCLK so output does not saturate

• Shown as noninverting integrator but slight modification will also work with 

inverting integrator

• Other integrator structures could be used

• Can leave one or more clock cycles between integrate up and integrate 

down

CCLK

VOUT

t

φ1

φ2

2
n
TCLK

kTCLK

tCONV



Dual-Slope ADC R
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Operation:
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During φ1, integrate VIN for time 2nTCLK

During φ2, integrate -VIN until comparator goes low and count clock 

transitions during down integration interval. At time comparator changes 

states, VOUT=0 and code in counter is k  

Reset counter at time 2nTCLK

At end of integrate up interval,   n n
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Dual-Slope ADC R
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Observations:

IN REFn

k
V V

2


• Not dependent upon R, C, or TCLK (provided integrator does not saturate)

• Very simple structure that can give good results and cost can be low

• Inherently monotone

• Capacitor large and likely must be off-chip

• Linearity of capacitor is important (particularly of concern when off-chip)

• Slow

• Not widely used

Benefits

Limitations:



Stay Safe and Stay Healthy !
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